Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics.

نویسندگان

  • Nelly Khidekel
  • Scott B Ficarro
  • Peter M Clark
  • Marian C Bryan
  • Danielle L Swaney
  • Jessica E Rexach
  • Yi E Sun
  • Joshua J Coon
  • Eric C Peters
  • Linda C Hsieh-Wilson
چکیده

The addition of the monosaccharide beta-N-acetyl-D-glucosamine to proteins (O-GlcNAc glycosylation) is an intracellular, post-translational modification that shares features with phosphorylation. Understanding the cellular mechanisms and signaling pathways that regulate O-GlcNAc glycosylation has been challenging because of the difficulty of detecting and quantifying the modification. Here, we describe a new strategy for monitoring the dynamics of O-GlcNAc glycosylation using quantitative mass spectrometry-based proteomics. Our method, which we have termed quantitative isotopic and chemoenzymatic tagging (QUIC-Tag), combines selective, chemoenzymatic tagging of O-GlcNAc proteins with an efficient isotopic labeling strategy. Using the method, we detect changes in O-GlcNAc glycosylation on several proteins involved in the regulation of transcription and mRNA translocation. We also provide the first evidence that O-GlcNAc glycosylation is dynamically modulated by excitatory stimulation of the brain in vivo. Finally, we use electron-transfer dissociation mass spectrometry to identify exact sites of O-GlcNAc modification. Together, our studies suggest that O-GlcNAc glycosylation occurs reversibly in neurons and, akin to phosphorylation, may have important roles in mediating the communication between neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical approaches to understanding O-GlcNAc glycosylation in the brain.

O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the mod...

متن کامل

Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications.

Identifying sites of post-translational modifications on proteins is a major challenge in proteomics. O-Linked beta-N-acetylglucosamine (O-GlcNAc) is a dynamic nucleocytoplasmic modification more analogous to phosphorylation than to classical complex O-glycosylation. We describe a mass spectrometry-based method for the identification of sites modified by O-GlcNAc that relies on mild beta-elimin...

متن کامل

Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation.

O-linked beta-N-acetylglucosamine (O-GlcNAc) is both an abundant and dynamic posttranslational modification similar to phosphorylation that occurs on serine and threonine residues of cytosolic and nuclear proteins in all metazoans and cell types examined, including cardiovascular tissue. Since the discovery of O-GlcNAc more than 20 years ago, the elucidation of O-GlcNAc as a posttranslational m...

متن کامل

O-GlcNAc-Specific Antibody CTD110.6 Cross-Reacts with N-GlcNAc2-Modified Proteins Induced under Glucose Deprivation

Modification of serine and threonine residues in proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is a feature of many cellular responses to the nutritional state and to stress. O-GlcNAc modification is reversibly regulated by O-linked β-N-acetylglucosamine transferase (OGT) and β-D-N-acetylglucosaminase (O-GlcNAcase). O-GlcNAc modification of proteins is dependent on the con...

متن کامل

The Functional Implications of O-GlcNAc Glycosylation for Gene Expression and Cell Survival

O-GlcNAc glycosylation is a carbohydrate modification found to play a role in the regulation of intracellular processes, such as proteasomal degradation, cytoskeletal dynamics and protein expression. Our interests in elucidating the role of glycosylation in cell signaling and mechanisms that control gene expression directed us to the examination of CREB as a possible O-GlcNAc glycosylated prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature chemical biology

دوره 3 6  شماره 

صفحات  -

تاریخ انتشار 2007